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Chapter 1

Introduction

omniORBpy is an Object Request Broker (ORB) that implements the CORBA 2.6
Python mapping [OMG01b]. It works in conjunction with omniORB for C++, ver-
sion 4.1.

This user guide tells you how to use omniORBpy to develop CORBA appli-
cations using Python. It assumes a basic understanding of CORBA, and of the
Python mapping. Unlike most CORBA standards, the Python mapping document
is small, and quite easy to follow.

This manual contains all you need to know about omniORB in order to use
omniORBpy. Some sections are repeated from the omniORB manual.

In this chapter, we give an overview of the main features of omniORBpy and
what you need to do to setup your environment to run it.

1.1 Features

1.1.1 Multithreading

omniORB is fully multithreaded. To achieve low call overhead, unnecessary call-
multiplexing is eliminated. With the default policies, there is at most one call in-
flight in each communication channel between two address spaces at any one time.
To do this without limiting the level of concurrency, new channels connecting the
two address spaces are created on demand and cached when there are concurrent
calls in progress. Each channel is served by a dedicated thread. This arrangement
provides maximal concurrency and eliminates any thread switching in either of
the address spaces to process a call. Furthermore, to maximise the throughput in
processing large call arguments, large data elements are sent as soon as they are
processed while the other arguments are being marshalled. With GIOP 1.2, large
messages are fragmented, so the marshaller can start transmission before it knows
how large the entire message will be.

From version 4.0 onwards, omniORB also supports a flexible thread pooling
policy, and supports sending multiple interleaved calls on a single connection.

1



2 CHAPTER 1. INTRODUCTION

This policy leads to a small amount of additional call overhead, compared to the
default thread per connection model, but allows omniORB to scale to extremely
large numbers of concurrent clients.

1.1.2 Portability

omniORB has always been designed to be portable. It runs on many flavours of
Unix, Windows, several embedded operating systems, and relatively obscure sys-
tems such as OpenVMS and Fujitsu-Siemens BS2000. It is designed to be easy to
port to new platforms. The IDL to C++ mapping for all target platforms is the
same.

1.1.3 Missing features

omniORB is not (yet) a complete implementation of the CORBA 2.6 core. The fol-
lowing is a list of the most significant missing features.

• omniORB does not have its own Interface Repository. However, it can act as
a client to an IfR. The omniifr project (http://omniifr.sourceforge.net/) aims to
create an IfR for omniORB.

• omniORB supports interceptors, but not the standard Portable Interceptor
API. Interceptor facilities available from Python code are quite limited.

These features may be implemented in the short to medium term. It is best to
check out the latest status on the omniORB home page (http://omniorb.sourceforge.
net/).

1.2 Setting up your environment

omniORBpy relies on the omniORB C++ libraries. If you are building from source,
you must first build omniORB itself, as detailed in the omniORB documentation.
After that, you can build the omniORBpy distribution, according to the instruc-
tions in the release notes.

1.2.1 Paths

With an Autoconf build (the norm on Unix platforms), omniORBpy is usually in-
stalled into a location that Python will find it.

Otherwise, you must tell Python where to find it. You must add two directories
to the PYTHONPATHenvironment variable. The lib/python directory contains
platform-independent Python code; the lib/$FARCH directory contains platform-
specific binaries, where FARCHis the name of your platform, such as x86_win32 .

On Unix platforms, set PYTHONPATHwith a command like:
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export PYTHONPATH=$PYTHONPATH:$TOP/lib/python:$TOP/lib/$FARCH

On Windows, use

set PYTHONPATH=%PYTHONPATH%;%TOP%\lib\python;%TOP%\lib\x86_win32

(Where the TOPenvironment variable is the root of your omniORB tree.)
You should also add the bin/$FARCH directory to your PATH, so you can

run the IDL compiler, omniidl. Finally, add the lib/$FARCH directory to LD_
LIBRARY_PATH, so the omniORB core library can be found.

1.2.2 Configuration file

• On Unix platforms, the omniORB runtime looks for the environment variable
OMNIORB_CONFIG. If this variable is defined, it contains the pathname of the
omniORB configuration file. If the variable is not set, omniORB will use the
compiled-in pathname to locate the file (by default /etc/omniORB.cfg ).

• On Win32 platforms (Windows NT, 2000, 95, 98), omniORB first checks the
environment variable OMNIORB_CONFIGto obtain the pathname of the con-
figuration file. If this is not set, it then attempts to obtain configuration data
in the system registry. It searches for the data under the key HKEY_LOCAL_
MACHINE\SOFTWARE\omniORB.

omniORB has a large number of parameters than can be configured. See chap-
ter 4 for full details. The files sample.cfg and sample.reg contain an example
configuration file and set of registry entries respectively.

To get all the omniORB examples running, the main thing you need to config-
ure is the Naming service, omniNames. To do that, the configuration file or registry
should contain an entry of the form

InitRef = NameService=corbaname::my.host.name

See section 6.1.2 for full details of corbaname URIs.
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Chapter 2

The Basics

In this chapter, we go through three examples to illustrate the practical steps to
use omniORBpy. By going through the source code of each example, the essential
concepts and APIs are introduced. If you have no previous experience with us-
ing CORBA, you should study this chapter in detail. There are pointers to other
essential documents you should be familiar with.

If you have experience with using other ORBs, you should still go through this
chapter because it provides important information about the features and APIs
that are necessarily omniORB specific.

2.1 The Echo example

We use an example which is similar to the one used in the omniORB manual. We
define an interface, called Example::Echo , as follows:

// echo_example.idl
module Example {

interface Echo {
string echoString(in string mesg);

};
};

The important difference from the omniORB Echo example is that our Echo
interface is declared within an IDL module named Example . The reason for this
will become clear in a moment.

If you are new to IDL, you can learn about its syntax in Chapter 3 of the CORBA
specification 2.6 [OMG01a]. For the moment, you only need to know that the in-
terface consists of a single operation, echoString() , which takes a string as an
argument and returns a copy of the same string.

The interface is written in a file, called example_echo.idl . It is part of the
CORBA standard that all IDL files should have the extension ‘.idl ’, although
omniORB does not enforce this.

5



6 CHAPTER 2. THE BASICS

2.2 Generating the Python stubs

From the IDL file, we use the IDL compiler, omniidl, to produce the Python stubs
for that IDL. The stubs contain Python declarations for all the interfaces and types
declared in the IDL, as required by the Python mapping. It is possible to generate
stubs dynamically at run-time, as described in section 4.9, but it is more efficient to
generate them statically.

To generate the stubs, we use a command line like

omniidl -bpython example_echo.idl

As required by the standard, that produces two Python packages derived from the
module name Example . Directory Example contains the client-side definitions
(and also the type declarations if there were any); directory Example__POA con-
tains the server-side skeletons. This explains the difficulty with declarations at IDL
global scope; section 2.7 explains how to access global declarations.

If you look at the Python code in the two packages, you will see that they are al-
most empty. They simply import the example_echo_idl.py file, which is where
both the client and server side declarations actually live. This arrangement is so
that omniidl can easily extend the packages if other IDL files add declarations to
the same IDL modules.

2.3 Object References and Servants

We contact a CORBA object through an object reference. The actual implementation
of a CORBA object is termed a servant.

Object references and servants are quite separate entities, and it is important
not to confuse the two. Client code deals purely with object references, so there can
be no confusion; object implementation code must deal with both object references
and servants. You will get a run-time error if you use a servant where an object
reference is expected, or vice-versa.

2.4 Example 1 — Colocated client and servant

In the first example, both the client and servant are in the same address space.
The next sections show how the client and servant can be split between different
address spaces.

First, the code:

1 #!/usr/bin/env python
2

3 import sys
4 from omniORB import CORBA, PortableServer
5 import Example, Example__POA
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6

7 class Echo_i (Example__POA.Echo):
8 def echoString(self, mesg):
9 print "echoString() called with message:", mesg

10 return mesg
11

12 orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
13 poa = orb.resolve_initial_references("RootPOA")
14

15 ei = Echo_i()
16 eo = ei._this()
17

18 poaManager = poa._get_the_POAManager()
19 poaManager.activate()
20

21 message = "Hello"
22 result = eo.echoString(message)
23

24 print "I said ’%s’. The object said ’%s’." % (message,result)

The example illustrates several important interactions among the ORB, the
POA, the servant, and the client. Here are the details:

2.4.1 Imports

Line 3
Import the sys module to access sys.argv .

Line 4
Import omniORB’s implementations of the CORBAand PortableServer
modules. The standard requires that these modules are available outside of
any package, so you can also do

import CORBA, PortableServer

Explicitly specifying omniORB is useful if you have more than one Python
ORB installed.

Line 5
Import the client-side stubs and server-side skeletons generated for IDL mod-
ule Example .

2.4.2 Servant class definition

Lines 7–10
For interface Example::Echo , omniidl produces a skeleton class named
Example__POA.Echo . Here we define an implementation class, Echo_i ,
which derives from the skeleton class.
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There is little constraint on how you design your implementation class, ex-
cept that it has to inherit from the skeleton class and must implement all of
the operations declared in the IDL. Note that since Python is a dynamic lan-
guage, errors due to missing operations and operations with incorrect type
signatures are only reported when someone tries to call those operations.

2.4.3 ORB initialisation

Line 12
The ORB is initialised by calling the CORBA.ORB_init() function. ORB_
init() is passed a list of command-line arguments, and an ORB identi-
fier. The ORB identifier should be ‘omniORB4’, but it is usually best to use
CORBA.ORB_ID, which is initialised to a suitable string, or leave it out alto-
gether, and rely on the default.

ORB_init() processes any command-line arguments which begin with the
string ‘-ORB’, and removes them from the argument list. See section 4.1.1
for details. If any arguments are invalid, or other initialisation errors occur
(such as errors in the configuration file), the CORBA.INITIALIZE exception
is raised.

2.4.4 Obtaining the Root POA

Line 13
To activate our servant object and make it available to clients, we must regis-
ter it with a POA. In this example, we use the Root POA, rather than creating
any child POAs. The Root POA is found with orb.resolve_initial_
references() .

A POA’s behaviour is governed by its policies. The Root POA has suitable
policies for many simple servers. Chapter 11 of the CORBA 2.6 specification
[OMG01a] has details of all the POA policies which are available.

2.4.5 Object initialisation

Line 15
An instance of the Echo servant object is created.

Line 16
The object is implicitly activated in the Root POA, and an object reference is
returned, using the _this() method.

One of the important characteristics of an object reference is that it is com-
pletely location transparent. A client can invoke on the object using its object
reference without any need to know whether the servant object is colocated
in the same address space or is in a different address space.
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In the case of colocated client and servant, omniORB is able to short-circuit
the client calls so they do not involve IIOP. The calls still go through the
POA, however, so the various POA policies affect local calls in the same way
as remote ones. This optimisation is applicable not only to object references
returned by _this() , but to any object references that are passed around
within the same address space or received from other address spaces via IIOP
calls.

2.4.6 Activating the POA

Lines 18–19
POAs are initially in the holding state, meaning that incoming requests are
blocked. Lines 18 and 19 acquire a reference to the POA’s POA manager, and
use it to put the POA into the active state. Incoming requests are now served.
Failing to activate the POA is one of the most common programming mis-
takes. If your program appears deadlocked, make sure you activated the
POA!

2.4.7 Performing a call

Line 22
At long last, we can call the object’s echoString() operation. Even though
the object is local, the operation goes through the ORB and POA, so the
types of the arguments can be checked, and any mutable arguments can be
copied. This ensures that the semantics of local and remote calls are iden-
tical. If any of the arguments (or return values) are of the wrong type, a
CORBA.BAD_PARAMexception is raised.

2.5 Example 2 — Different Address Spaces

In this example, the client and the object implementation reside in two different
address spaces. The code of this example is almost the same as the previous exam-
ple. The only difference is the extra work which needs to be done to pass the object
reference from the object implementation to the client.

The simplest (and quite primitive) way to pass an object reference between two
address spaces is to produce a stringified version of the object reference and to pass
this string to the client as a command-line argument. The string is then converted
by the client into a proper object reference. This method is used in this example. In
the next example, we shall introduce a better way of passing the object reference
using the CORBA Naming Service.

2.5.1 Object Implementation: Making a Stringified Object Reference
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1 #!/usr/bin/env python
2

3 import sys
4 from omniORB import CORBA, PortableServer
5 import Example, Example__POA
6

7 class Echo_i (Example__POA.Echo):
8 def echoString(self, mesg):
9 print "echoString() called with message:", mesg

10 return mesg
11

12 orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
13 poa = orb.resolve_initial_references("RootPOA")
14

15 ei = Echo_i()
16 eo = ei._this()
17

18 print orb.object_to_string(eo)
19

20 poaManager = poa._get_the_POAManager()
21 poaManager.activate()
22

23 orb.run()

Up until line 18, this example is identical to the colocated case. On line 18, the
ORB’s object_to_string() operation is called. This results in a string starting
with the signature ‘IOR:’ and followed by some hexadecimal digits. All CORBA
2 compliant ORBs are able to convert the string into its internal representation of
a so-called Interoperable Object Reference (IOR). The IOR contains the location
information and a key to uniquely identify the object implementation in its own
address space1. From the IOR, an object reference can be constructed.

After the POA has been activated, orb.run() is called. Since omniORB is
fully multi-threaded, it is not actually necessary to call orb.run() for operation
dispatch to happen—if the main program had some other work to do, it could do
so, and remote invocations would be dispatched in separate threads. However,
in the absence of anything else to do, orb.run() is called so the thread blocks
rather than exiting immediately when the end-of-file is reached. orb.run() stays
blocked until the ORB is shut down.

2.5.2 Client: Using a Stringified Object Reference

1 #!/usr/bin/env python
2

3 import sys
4 from omniORB import CORBA
5 import Example

1Notice that the object key is not globally unique across address spaces.
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6

7 orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
8

9 ior = sys.argv[1]
10 obj = orb.string_to_object(ior)
11

12 eo = obj._narrow(Example.Echo)
13

14 if eo is None:
15 print "Object reference is not an Example::Echo"
16 sys.exit(1)
17

18 message = "Hello from Python"
19 result = eo.echoString(message)
20

21 print "I said ’%s’. The object said ’%s’." % (message,result)

The stringified object reference is passed to the client as a command-line argu-
ment2. The client uses the ORB’s string_to_object() function to convert the
string into a generic object reference (CORBA.Object ).

On line 12, the object’s _narrow() function is called to convert the CORBA.
Object reference into an Example.Echo reference. If the IOR was not actually of
type Example.Echo , or something derived from it, _narrow() returns None.

In fact, since Python is a dynamically-typed language, string_to_object()
is often able to return an object reference of a more derived type than CORBA.
Object . See section 3.1 for details.

2.5.3 System exceptions

The keep it short, the client code shown above performs no exception handling. A
robust client (and server) should do, since there are a number of system exceptions
which can arise.

As already mentioned, ORB_init() can raise the CORBA.INITIALIZE excep-
tion if the command line arguments or configuration file are invalid. string_to_
object() can raise two exceptions: if the string is not an IOR (or a valid URI
with omniORB 3), it raises CORBA.BAD_PARAM; if the string looks like an IOR, but
contains invalid data, is raises CORBA.MARSHAL.

The call to echoString() can result in any of the CORBA system exceptions,
since any exceptions not caught on the server side are propagated back to the client.
Even if the implementation of echoString() does not raise any system excep-
tions itself, failures in invoking the operation can cause a number of exceptions.
First, if the server process cannot be contacted, a CORBA.TRANSIENTexception is
raised. Second, if the server process can be contacted, but the object in question
does not exist there, a CORBA.OBJECT_NOT_EXISTexception is raised.

2The code does not check that there is actually an IOR on the command line!
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As explained later in section 3.1, the call to _narrow() may also involve a
call to the object to confirm its type. This means that _narrow() can also raise
CORBA.TRANSIENT, CORBA.OBJECT_NOT_EXIST, and CORBA.COMM_FAILURE.

Section 4.7 describes how exception handlers can be installed for all the various
system exceptions, to avoid surrounding all code with try . . . except blocks.

2.5.4 Lifetime of a CORBA object

CORBA objects are either transient or persistent. The majority are transient, mean-
ing that the lifetime of the CORBA object (as contacted through an object reference)
is the same as the lifetime of its servant object. Persistent objects can live beyond
the destruction of their servant object, the POA they were created in, and even
their process. Persistent objects are, of course, only contactable when their associ-
ated servants are active, or can be activated by their POA with a servant manager3.
A reference to a persistent object can be published, and will remain valid even if
the server process is restarted.

A POA’s Lifespan Policy determines whether objects created within it are tran-
sient or persistent. The Root POA has the TRANSIENTpolicy.

An alternative to creating persistent objects is to register object references in
a naming service and bind them to fixed pathnames. Clients can bind to the object
implementations at runtime by asking the naming service to resolve the pathnames
to the object references. CORBA defines a standard naming service, which is a
component of the Common Object Services (COS) [OMG98], that can be used for
this purpose. The next section describes an example of how to use the COS Naming
Service.

2.6 Example 3 — Using the Naming Service

In this example, the object implementation uses the Naming Service [OMG98] to
pass on the object reference to the client. This method is far more practical than
using stringified object references. The full listings of the server and client are
below.

The names used by the Naming service consist of a sequence of name compo-
nents. Each name component has an id and a kind field, both of which are strings.
All name components except the last one are bound to naming contexts. A naming
context is analogous to a directory in a filing system: it can contain names of ob-
ject references or other naming contexts. The last name component is bound to an
object reference.

Sequences of name components can be represented as a flat string, using ‘.’ to
separate the id and kind fields, and ‘/’ to separate name components from each

3The POA itself can be activated on demand with an adapter activator.
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other4. In our example, the Echo object reference is bound to the stringified name
‘test.my_context/ExampleEcho.Object ’.

The kind field is intended to describe the name in a syntax-independent way.
The naming service does not interpret, assign, or manage these values. However,
both the name and the kind attribute must match for a name lookup to succeed.
In this example, the kind values for test and ExampleEcho are chosen to be
‘my_context ’ and ‘Object ’ respectively. This is an arbitrary choice as there is no
standardised set of kind values.

2.6.1 Obtaining the Root Context object reference

The initial contact with the Naming Service can be established via the root context.
The object reference to the root context is provided by the ORB and can be ob-
tained by calling resolve_initial_references() . The following code frag-
ment shows how it is used:

import CosNaming
orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
obj = orb.resolve_initial_references("NameService");
cxt = obj._narrow(CosNaming.NamingContext)

Remember, omniORB constructs its internal list of initial references at initial-
isation time using the information provided in the configuration file omniORB.
cfg , or given on the command line. If this file is not present, the internal list
will be empty and resolve_initial_references() will raise a CORBA.ORB.
InvalidName exception.

Note that, like string_to_object() , resolve_initial_references()
returns base CORBA.Object , so we should narrow it to the interface we want. In
this case, we want CosNaming.NamingContext 5.

2.6.2 The Naming Service interface

It is beyond the scope of this chapter to describe in detail the Naming Service in-
terface. You should consult the CORBA services specification [OMG98] (chapter
3).

2.6.3 Server code

Hopefully, the server code is self-explanatory:

#!/usr/bin/env python
import sys

4There are escaping rules to cope with id and kind fields which contain ‘.’ and ‘/’ characters.
See chapter 6 of this manual, and chapter 3 of the CORBA services specification, as updated for the
Interoperable Naming Service [OMG00].

5If you are on-the-ball, you will have noticed that we didn’t call _narrow() when resolving the
Root POA. The reason it is safe to miss it out is given in section 3.1.
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from omniORB import CORBA, PortableServer
import CosNaming, Example, Example__POA

# Define an implementation of the Echo interface
class Echo_i (Example__POA.Echo):

def echoString(self, mesg):
print "echoString() called with message:", mesg
return mesg

# Initialise the ORB and find the root POA
orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
poa = orb.resolve_initial_references("RootPOA")

# Create an instance of Echo_i and an Echo object reference
ei = Echo_i()
eo = ei._this()

# Obtain a reference to the root naming context
obj = orb.resolve_initial_references("NameService")
rootContext = obj._narrow(CosNaming.NamingContext)

if rootContext is None:
print "Failed to narrow the root naming context"
sys.exit(1)

# Bind a context named "test.my_context" to the root context
name = [CosNaming.NameComponent("test", "my_context")]
try:

testContext = rootContext.bind_new_context(name)
print "New test context bound"

except CosNaming.NamingContext.AlreadyBound, ex:
print "Test context already exists"
obj = rootContext.resolve(name)
testContext = obj._narrow(CosNaming.NamingContext)
if testContext is None:

print "test.mycontext exists but is not a NamingContext"
sys.exit(1)

# Bind the Echo object to the test context
name = [CosNaming.NameComponent("ExampleEcho", "Object")]
try:

testContext.bind(name, eo)
print "New ExampleEcho object bound"

except CosNaming.NamingContext.AlreadyBound:
testContext.rebind(name, eo)
print "ExampleEcho binding already existed -- rebound"
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# Activate the POA
poaManager = poa._get_the_POAManager()
poaManager.activate()

# Block for ever (or until the ORB is shut down)
orb.run()

2.6.4 Client code

Hopefully the client code is self-explanatory too:
#!/usr/bin/env python
import sys
from omniORB import CORBA
import CosNaming, Example

# Initialise the ORB
orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)

# Obtain a reference to the root naming context
obj = orb.resolve_initial_references("NameService")
rootContext = obj._narrow(CosNaming.NamingContext)

if rootContext is None:
print "Failed to narrow the root naming context"
sys.exit(1)

# Resolve the name "test.my_context/ExampleEcho.Object"
name = [CosNaming.NameComponent("test", "my_context"),

CosNaming.NameComponent("ExampleEcho", "Object")]
try:

obj = rootContext.resolve(name)

except CosNaming.NamingContext.NotFound, ex:
print "Name not found"
sys.exit(1)

# Narrow the object to an Example::Echo
eo = obj._narrow(Example.Echo)

if eo is None:
print "Object reference is not an Example::Echo"
sys.exit(1)

# Invoke the echoString operation
message = "Hello from Python"
result = eo.echoString(message)

print "I said ’%s’. The object said ’%s’." % (message,result)
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2.7 Global IDL definitions

As we have seen, the Python mapping maps IDL modules to Python packages with
the same name. This poses a problem for IDL declarations at global scope. Global
declarations are generally a bad idea since they make name clashes more likely,
but they must be supported.

Since Python does not have a concept of a global scope (only a per-module
global scope, which is dangerous to modify), global declarations are mapped to a
specially named Python package. By default, this package is named _GlobalIDL ,
with skeletons in _GlobalIDL__POA . The package name may be changed with
omniidl’s -Wbglobal option, described in section 5.2. The omniORB C++ Echo
example, with IDL:

interface Echo {
string echoString(in string mesg);

};

can therefore be supported with code like

#!/usr/bin/env python

import sys
from omniORB import CORBA
import _GlobalIDL

orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)

ior = sys.argv[1]
obj = orb.string_to_object(ior)
eo = obj._narrow(_GlobalIDL.Echo)

message = "Hello from Python"
result = eo.echoString(message)
print "I said ’%s’. The object said ’%s’" % (message,result)



Chapter 3

Python language mapping issues

omniORBpy adheres to the standard Python mapping [OMG01b], so there is no
need to describe the mapping here. This chapter outlines a number of issues which
are not addressed by the standard (or are optional), and how they are resolved in
omniORBpy.

3.1 Narrowing object references

As explained in chapter 2, whenever you receive an object reference declared to be
base CORBA::Object , such as from NamingContext::resolve() or ORB::
string_to_object() , you should narrow the reference to the type you require.
You might think that since Python is a dynamically typed language, narrowing
should never be necessary. Unfortunately, although omniORBpy often generates
object references with the right types, it cannot do so in all circumstances.

The rules which govern when narrowing is required are quite complex. To be
totally safe, you can always narrow object references to the type you are expecting.
The advantages of this approach are that it is simple and that it is guaranteed to
work with all Python ORBs.

The disadvantage with calling narrow for all received object references is that
much of the time it is guaranteed not to be necessary. If you understand the situa-
tions in which narrowing is necessary, you can avoid spurious narrowing.

3.1.1 The gory details

When object references are transmitted (or stored in stringified IORs), they contain
a single type identifier string, termed the repository id. Normally, the repository id
represents the most derived interface of the object. However, it is also permitted to
be the empty string, or to refer to an interface higher up the inheritance hierarchy.
To give a concrete example, suppose there are two IDL files:

// a.idl
module M1 {

17
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interface A {
void opA();

};
};

// b.idl
#include "a.idl"
module M2 {

interface B : M1::A {
void opB();

};
};

A reference to an object with interface B will normally contain the repository id
‘IDL:M2/B:1.0 ’1. It is also permitted to have an empty repository id, or the id
‘IDL:M1/A:1.0 ’. ‘IDL:M1/A:1.0 ’ is unlikely unless the server is being deliber-
ately obtuse.

Whenever omniORBpy receives an object reference from somewhere—either
as a return value or as an operation argument—it has a particular target interface
in mind, which it compares with the repository id it has received. A target of base
CORBA::Object is just one (common) case. For example, in the following IDL:

// c.idl
#include "a.idl"
module M3 {

interface C {
Object getObj();
M1::A getA();

};
};

the target interface for getObj ’s return value is CORBA::Object ; the target inter-
face for getA ’s return value is M1::A .

omniORBpy uses the result of comparing the received and target repository
ids to determine the type of the object reference it creates. The object reference has
either the type of the received reference, or the target type, according to this table:

Case Objref Type
1. The received id is the same as the target id received
2. The received id is not the same as the target id, but

the ORB knows that the received interface is derived
from the target interface

received

3. The received id is unknown to the ORB target
4. The received id is not the same as the target id, and

the ORB knows that the received interface is not de-
rived from the target interface

target

1It is possible to change the repository id strings associated with particular interfaces using the
ID , version and prefix pragmas.
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Cases 1 and 2 are the most common. Case 2 explains why it is not necessary
to narrow the result of calling resolve_initial_references("RootPOA") :
the return is always of the known type PortableServer.POA , which is derived
from the target type of CORBA.Object .

Case 3 is also quite common. Suppose a client knows about IDL modules M1
and M3 from above, but not module M2. When it calls getA() on an instance of
M3::C , the return value may validly be of type M2::B , which it does not know. By
creating an object reference of type M1::A in this case, the client is still able to call
the object’s opA() operation. On the other hand, if getObj() returns an object of
type M2::B , the ORB will create a reference to base CORBA::Object , since that is
the target type.

Note that the ORB never rejects an object reference due to it having the wrong
type. Even if it knows that the received id is not derived from the target interface
(case 4), it might be the case that the object actually has a more derived interface,
which is derived from both the type it is claiming to be and the target type. That is,
of course, extremely unlikely.

In cases 3 and 4, the ORB confirms the type of the object by calling _is_a() just
before the first invocation on the object. If it turns out that the object is not of the
right type after all, the CORBA.INV_OBJREFexception is raised. The alternative
to this approach would be to check the types of object references when they were
received, rather than waiting until the first invocation. That would be inefficient,
however, since it is quite possible that a received object reference will never be
used. It may also cause objects to be activated earlier than expected.

In summary, whenever your code receives an object reference, you should bear
in mind what omniORBpy’s idea of the target type is. You must not assume that
the ORB will always correctly figure out a more derived type than the target. One
consequence of this is that you must always narrow a plain CORBA::Object to a
more specific type before invoking on it2. You can assume that the object reference
you receive is of the target type, or something derived from it, although the object
it refers to may turn out to be invalid. The fact that omniORBpy often is able
figure out a more derived type than the target is only useful when using the Python
interactive command line.

3.2 Support for Any values

In statically typed languages, such as C++, Anys can only be used with built-in
types and IDL-declared types for which stubs have been generated. If, for example,
a C++ program receives an Any containing a struct for which it does not have static
knowledge, it cannot easily extract the struct contents. The only solution is to use
the inconvenient DynAny interface.

Since Python is a dynamically typed language, it does not have this difficulty.
When omniORBpy receives an Any containing types it does not know, it is able to

2Unless you are invoking pseudo operations like _is_a() and _non_existent() .
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create new Python types which behave exactly as if there were statically generated
stubs available. Note that this behaviour is not required by the Python mapping
specification, so other Python ORBs may not be so accommodating.

The equivalent of DynAny creation can be achieved by dynamically writing
and importing new IDL, as described in section 4.9.

There is, however, a minor fly in the ointment when it comes to receiving
Anys. When an Any is transmitted, it is sent as a TypeCode followed by the ac-
tual value. Normally, the TypeCodes for entities with names—members of structs,
for example—contain those names as strings. That permits omniORBpy to cre-
ate types with the corresponding names. Unfortunately, the GIOP specification
permits TypeCodes to be sent with empty strings where the names would nor-
mally be. In this situation, the types which omniORBpy creates cannot be given
the correct names. The contents of all types except structs and exceptions can be
accessed without having to know their names, through the standard interfaces.
Unknown structs, exceptions and valuetypes received by omniORBpy have an at-
tribute named ‘_values ’ which contains a sequence of the member values. This
attribute is omniORBpy specific.

Similarly, TypeCodes for constructed types such as structs and unions normally
contain the repository ids of those types. This means that omniORBpy can use
types statically declared in the stubs when they are available. Once again, the
specification permits the repository id strings to be empty3. This means that even
if stubs for a type received in an Any are available, it may not be able to create a
Python value with the right type. For example, with a struct definition such as:

module M {
struct S {

string str;
long l;

};
};

The transmitted TypeCode for M::S may contain only the information that it is a
structure containing a string followed by a long, not that it is type M::S , or what
the member names are.

To cope with this situation, omniORBpy has an extension to the standard in-
terface which allows you to coerce an Any value to a known type. Calling an
Any’s value() method with a TypeCode argument returns either a value of the
requested type, or None if the requested TypeCode is not equivalent to the Any’s
TypeCode. The following code is guaranteed to be safe, but is not standard:

a = # Acquire an Any from somewhere
v = a.value(CORBA.TypeCode(CORBA.id(M.S)))
if v is not None:

print v.str
else:

print "The Any does not contain a value compatible with M::S."

3The use of empty repository id strings is deprecated as of GIOP 1.2.
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3.2.1 Any helper module

omniORBpy provides an alternative, non-standard way of constructing and de-
constructing Anys that is often more convenient to use in Python programs. It uses
Python’s own dynamic typing to infer the TypeCodes to use. The omniORB.any
module contains two functions, to_any() and from_any() .

to_any() takes a Python object and tries to return it inside an Any. It uses the
following rules:

• Python strings are represented as CORBA strings.

• Python unicode objects are represented as CORBA wstrings.

• Python integers are represented as CORBA longs.

• Python long integers are represented as a CORBA integer type taken from
long, unsigned long, long long, unsigned long, depending on what size type
the Python long integer will fit in. If the value is too large for any of these,
CORBA.BAD_PARAMis raised.

• Python lists and tuples of the types above are represented as sequences of the
corresponding CORBA types.

• Python lists and tuples of mixed types are represented as sequences of Anys.

• Python dictionaries with string keys are represented as CORBA structs, using
the dictionary keys as the member names, and the types of the dictionary
values as the member types.

• Instances of CORBA types (structs, unions, enums, etc.) generated by the
IDL compiler are represented as themselves.

All other Python types result in a CORBA.BAD_PARAMexception.
The from_any() function works in reverse. It takes an Any as its argument

and extracts its contents using the same rules as to_any() . By default, CORBA
structs are extracted to dictionaries; if the optional keep_structs argument is set
true, they are instead left as instances of the CORBA struct classes.

3.3 Interface Repository stubs

The Interface Repository interfaces are declared in IDL module CORBAso, accord-
ing to the Python mapping, the stubs for them should appear in the Python CORBA
module, along with all the other CORBA definitions. However, since the stubs are
extremely large, omniORBpy does not include them by default. To do so would
unnecessarily increase the memory footprint and start-up time.

The Interface Repository stubs are automatically included if you define the
OMNIORBPY_IMPORT_IR_STUBSenvironment variable. Alternatively, you can
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import the stubs at run-time by calling the omniORB.importIRStubs() func-
tion. In both cases, the stubs become available in the Python CORBAmodule.



Chapter 4

omniORB configuration and API

omniORB 4.1, and thus omniORBpy 3, has a wide range of parameters that can be
configured. They can be set in the configuration file / Windows registry, as envi-
ronment variables, or on the command line. A few parameters can be configured
at run time. This chapter lists all the configuration parameters, and how they are
used.

4.1 Setting parameters

When CORBA::ORB_init() is called, the value for each configuration parameter
is searched for in the following order:

1. Command line arguments

2. Environment variables

3. Configuration file / Windows registry

4. Built-in defaults

4.1.1 Command line arguments

Command line arguments take the form ‘-ORBparameter’, and usually expect an-
other argument. An example is ‘-ORBtraceLevel 10 ’.

4.1.2 Environment variables

Environment variables consist of the parameter name prefixed with ‘ORB’. Using
bash, for example

export ORBtraceLevel=10

23
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4.1.3 Configuration file

The best way to understand the format of the configuration file is to look at the
sample.cfg file in the omniORB distribution. Each parameter is set on a single
line like

traceLevel = 10

Some parameters can have more than one value, in which case the parameter
name may be specified more than once, or you can leave it out:

InitRef = NameService=corbaname::host1.example.com
= InterfaceRepository=corbaloc::host2.example.com:1234/IfR

Note how command line arguments and environment variables prefix pa-
rameter names with ‘-ORB’ and ‘ORB’ respectively, but the configuration
file does not use a prefix.

4.1.4 Windows registry

On Windows, configuration parameters can be stored in the registry, under the key
HKEY_LOCAL_MACHINE\SOFTWARE\omniORB.

The file sample.reg shows the settings that can be made. It can be edited and
then imported into regedit.

4.2 Tracing options

The following options control debugging trace output.

traceLevel default = 1

omniORB can output tracing and diagnostic messages to the standard error stream.
The following levels are defined:

level 0 critical errors only
level 1 informational messages only
level 2 configuration information and warnings
level 5 notifications when server threads are created and

communication endpoints are shutdown
level 10 execution and exception traces
level 25 trace each send or receive of a giop message
level 30 dump up to 128 bytes of each giop message
level 40 dump complete contents of each giop message
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The trace level is cumulative, so at level 40, all trace messages are output.

traceExceptions default = 0

If the traceExceptions parameter is set true, all system exceptions are logged
as they are thrown, along with details about where the exception is thrown from.
This parameter is enabled by default if the traceLevel is set to 10 or more.

traceInvocations default = 0

If the traceInvocations parameter is set true, all local and remote invoca-
tions are logged, in addition to any logging that may have been selected with
traceLevel .

traceInvocationReturns default = 0

If the traceInvocationReturns parameter is set true, a log message is output
as an operation invocation returns. In conjunction with traceInvocations and
traceTime (described below), this provides a simple way of timing CORBA calls
within your application.

traceThreadId default = 0

If traceThreadId is set true, all trace messages are prefixed with the id of the
thread outputting the message. This can be handy for tracking down race condi-
tions, but it adds significant overhead to the logging function so it is turned off by
default.

traceTime default = 0

If traceTime is set true, all trace messages are prefixed with the time. This is
useful, but on some platforms it adds a very large overhead, so it is turned off by
default.

4.2.1 Tracing API

The tracing parameters can be inspected or modified at runtime with the following
functions in the omniORBmodule:

traceLevel()
traceInvocations()
traceInvocationReturns()
traceThreadId()
traceTime()

Calling one of the functions with no arguments returns the current value; calling it
with a single integer argument sets the value.
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4.3 Miscellaneous global options

These options control miscellaneous features that affect the whole ORB runtime.

dumpConfiguration default = 0

If set true, the ORB dumps the values of all configuration parameters at start-up.

scanGranularity default = 5

As explained in chapter 7, omniORB regularly scans incoming and outgoing con-
nections, so it can close unused ones. This value is the granularity in seconds at
which the ORB performs its scans. A value of zero turns off the scanning alto-
gether.

nativeCharCodeSet default = ISO-8859-1

The native code set the application is using for char and string . See chapter 8.

copyValuesInLocalCalls default = 1

Determines whether valuetype parameters in local calls are copied or not. See
chapter 10.

abortOnInternalError default = 0

If this is set true, internal fatal errors will abort immediately, rather than throw-
ing the omniORB::fatalException exception. This can be helpful for tracking
down bugs, since it leaves the call stack intact.

4.4 Client side options

These options control aspects of client-side behaviour.

InitRef default = none

Specify objects available from orb.resolve_initial_references() . The ar-
guments take the form <key>=<uri>, where the key is the name given to resolve_
initial_references() and uri is a valid CORBA object reference URI, as de-
tailed in chapter 6.

DefaultInitRef default = none

Specify the default URI prefix for resolve_initial_references() , as ex-
plained in chapter 6.
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clientTransportRule default = * unix,tcp,ssl

Used to specify the way the client contacts a server, depending on the server’s
address. See section 7.7.1 for details.

clientCallTimeOutPeriod default = 0

Call timeout in milliseconds for the client side. If a call takes longer than the speci-
fied number of milliseconds, the ORB closes the connection to the server and raises
a TRANSIENTexception. A value of zero means no timeout; calls can block for ever.
See section 7.3.1 for more information about timeouts.

Note: omniORB 3 had timeouts specified in seconds; omniORB 4.0 and later use
milliseconds for timeouts.

clientConnectTimeOutPeriod default = 0

The timeout that is used in the case that a new network connection is established
to the server. A value of zero means that the normal call timeout is used. See
section 7.3.1 for more information about timeouts.

supportPerThreadTimeOut default = 0

If this parameter is set true, timeouts can be set on a per thread basis, as well as
globally and per object. Checking per-thread storage has a noticeable performance
impact, so it is turned off by default.

outConScanPeriod default = 120

Idle timeout in seconds for outgoing (i.e. client initiated) connections. If a connec-
tion has been idle for this amount of time, the ORB closes it. See section 7.5.

maxGIOPConnectionPerServer default = 5

The maximum number of concurrent connections the ORB will open to a single
server. If multiple threads on the client call the same server, the ORB opens addi-
tional connections to the server, up to the maximum specified by this parameter. If
the maximum is reached, threads are blocked until a connection becomes free for
them to use.

oneCallPerConnection default = 1

When this parameter is set to true (the default), the ORB will only send a single call
on a connection at a time. If multiple client threads invoke on the same server, mul-
tiple connections are opened, up to the limit specified by maxGIOPConnection
PerServer . With this parameter set to false, the ORB will allow concurrent calls
on a single connection. This saves connection resources, but requires slightly more
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management work for both client and server. Some server-side ORBs (including
omniORB versions before 4.0) serialise all calls on a single connection.

offerBiDirectionalGIOP default = 0

If set true, the client will indicate to servers that it is willing to accept callbacks on
client-initiated connections using bidirectional GIOP, provided the relevant POA
policies are set. See section 7.8.

verifyObjectExistsAndType default = 1

By default, omniORB uses the GIOP LOCATE_REQUESTmessage to verify the ex-
istence of an object prior to the first invocation. In the case that the full type of
the object is not known, it instead calls the _is_a() operation to check the ob-
ject’s type. Some ORBs have bugs that mean one or other of these operations fail.
Setting this parameter false prevents omniORB from making these calls.

giopTargetAddressMode default = 0

GIOP 1.2 supports three addressing modes for contacting objects. This parameter
selects the mode that omniORB uses. A value of 0 means GIOP::KeyAddr ; 1
means GIOP::ProfileAddr ; 2 means GIOP::ReferenceAddr .

bootstrapAgentHostname default = none

If set, this parameter indicates the hostname to use for look-ups using the obsolete
Sun bootstrap agent. This mechanism is superseded by the interoperable naming
service.

bootstrapAgentPort default = 900

The port number for the obsolete Sun bootstrap agent.

principal default = none

GIOP 1.0 and 1.1 have a request header field named ‘principal’, which contains
a sequence of octets. It was never defined what it should mean, and its use is
now deprecated; GIOP 1.2 has no such field. Some systems (e.g. Gnome) use the
principal field as a primitive authentication scheme. This parameter sets the data
omniORB uses in the principal field. The default is an empty sequence.

4.5 Server side options

These parameters affect server-side operations.
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endPoint default = giop:tcp::
endPointNoListen
endPointPublish
endPointNoPublish
endPointPublishAllIFs

These options determine the end-points the ORB should listen on, and the details
that should be published in IORs. See chapter 7 for details.

serverTransportRule default = * unix,tcp,ssl

Configure the rules about whether a server should accept an incoming connection
from a client. See section 7.7.2 for details.

serverCallTimeOutPeriod default = 0

This timeout is used to catch the situation that the server starts receiving a request,
but the end of the request never comes. If a calls takes longer than the specified
number of milliseconds to arrive, the ORB shuts the connection. A value of zero
means never timeout.

inConScanPeriod default = 180

Idle timeout in seconds for incoming. If a connection has been idle for this amount
of time, the ORB closes it. See section 7.5.

threadPerConnectionPolicy default = 1

If true (the default), the ORB dedicates one server thread to each incoming connec-
tion. Setting it false means the server should use a thread pool.

maxServerThreadPerConnection default = 100

If the client multiplexes several concurrent requests on a single connection, omni-
ORB uses extra threads to service them. This parameter specifies the maximum
number of threads that are allowed to service a single connection at any one time.

maxServerThreadPoolSize default = 100

The maximum number of threads the server will allocate to do various tasks, in-
cluding dispatching calls in the thread pool mode. This number does not include
threads dispatched under the thread per connection server mode.

threadPerConnectionUpperLimit default = 10000
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If the threadPerConnectionPolicy parameter is true, the ORB can automati-
cally transition to thread pool mode if too many connections arrive. This parameter
sets the number of connections at which thread pooling is started. The default of
10000 is designed to mean that it never happens.

threadPerConnectionLowerLimit default = 9000

If thread pooling was started because the number of connections hit the upper
limit, this parameter determines when thread per connection should start again.

threadPoolWatchConnection default = 1

If non-zero, threads from the pool temporarily behave a bit like thread per connec-
tion after dispatching a call. See section 7.4.2 for details.

acceptBiDirectionalGIOP default = 0

Determines whether a server will ever accept clients’ offers of bidirectional GIOP
connections. See section 7.8.

unixTransportDirectory default = /tmp/omni-%u

(Unix platforms only). Selects the location used to store Unix domain sockets. The
‘%u’ is expanded to the user name.

unixTransportPermission default = 0777

(Unix platforms only). Determines the octal permission bits for Unix domain sock-
ets. By default, all users can connect to a server, just as with TCP.

supportCurrent default = 1

omniORB supports the PortableServer::Current interface to provide thread
context information to servants. Supporting current has a small but noticeable run-
time overhead due to accessing thread specific storage, so this option allows it to
be turned off.

objectTableSize default = 0

Hash table size of the Active Object Map. If this is zero, the ORB uses a dynami-
cally resized open hash table. This is normally the best option, but it leads to less
predictable performance since any operation which adds or removes a table entry
may trigger a resize. If set to a non-zero value, the hash table has the specified
number of entries, and is never resized. Note that the hash table is open, so this
does not limit the number of active objects, just how efficiently they can be located.
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poaHoldRequestTimeout default = 0

If a POA is put in the HOLDINGstate, calls to it will be timed out after the speci-
fied number of milliseconds, by raising a TRANSIENTexception. Zero means no
timeout.

supportBootstrapAgent default = 0

If set true, servers support the Sun bootstrap agent protocol.

4.6 GIOP and interoperability options

These options control omniORB’s use of GIOP, and cover some areas where omni-
ORB can work around buggy behaviour by other ORBs.

maxGIOPVerson default = 1.2

Choose the maximum GIOP version the ORB should support. Valid values are 1.0,
1.1 and 1.2.

giopMaxMsgSize default = 2097152

The largest message, in bytes, that the ORB will send or receive, to avoid resource
starvation. If the limit is exceeded, a MARSHALexception is thrown. The size must
be >= 8192.

strictIIOP default = 1

If true, be strict about interpretation of the IIOP specification; if false, permit some
buggy behaviour to pass.

lcdMode default = 0

If true, select ‘Lowest Common Denominator’ mode. This disables various IIOP
and GIOP features that are known to cause problems with some ORBs.

tcAliasExpand default = 0

This flag is used to indicate whether TypeCodes associated with Anys should have
aliases removed. This functionality is included because some ORBs will not recog-
nise an Any containing a TypeCode with aliases to be the same as the actual type
contained in the Any. Note that omniORB will always remove top-level aliases,
but will not remove aliases from TypeCodes that are members of other TypeCodes
(e.g. TypeCodes for members of structs etc.), unless tcAliasExpand is set to 1.
There is a performance penalty when inserting into an Any if tcAliasExpand is
set to 1.
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useTypeCodeIndirections default = 1

TypeCode Indirections reduce the size of marshalled TypeCodes, and are essential
for recursive types, but some old ORBs do not support them. Setting this flag to
false prevents the use of indirections (and, therefore, recursive TypeCodes).

acceptMisalignedTcIndirections default = 0

If true, try to fix a mis-aligned indirection in a typecode. This is used to work
around a bug in some old versions of Visibroker’s Java ORB.

4.7 System Exception Handlers

By default, all system exceptions that are raised during an operation invocation,
with the exception of some cases of CORBA.TRANSIENT, are propagated to the ap-
plication code. Some applications may prefer to trap these exceptions within the
proxy objects so that the application logic does not have to deal with the error con-
dition. For example, when a CORBA.COMM_FAILUREis received, an application
may just want to retry the invocation until it finally succeeds. This approach is
useful for objects that are persistent and have idempotent operations.

omniORBpy provides a set of functions to install exception handlers. Once they
are installed, proxy objects will call these handlers when the associated system
exceptions are raised by the ORB runtime. Handlers can be installed for CORBA.
TRANSIENT, CORBA.COMM_FAILUREand CORBA.SystemException . This last
handler covers all system exceptions other than the two covered by the first two
handlers. An exception handler can be installed for individual proxy objects, or it
can be installed for all proxy objects in the address space.

4.7.1 Minor codes

omniORB makes extensive use of exception minor codes to indicate the specific cir-
cumstances surrounding a system exception. The C++ file include/omniORB4/
minorCode.h contains definitions of all the minor codes used in omniORB, cov-
ering codes allocated in the CORBA specification, and ones specific to omniORB.

Applications can use minor codes to adjust their behaviour according to the
condition. You can receive a string format of a minor code by calling the omniORB.
minorCodeToString() function, passing an exception object as its argument.

4.7.2 CORBA::TRANSIENT handlers

TRANSIENTexceptions can occur in many circumstances. One circumstance is as
follows:
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1. The client invokes on an object reference.

2. The object replies with a LOCATION_FORWARDmessage.

3. The client caches the new location and retries to the new location.

4. Time passes...

5. The client tries to invoke on the object again, using the cached, forwarded
location.

6. The attempt to contact the object fails.

7. The ORB runtime resets the location cache and throws a TRANSIENTexcep-
tion with minor code TRANSIENT_FailedOnForwarded .

In this situation, the default TRANSIENTexception handler retries the call, us-
ing the object’s original location. If the retry results in another LOCATION_FORWARD,
to the same or a different location, and that forwarded location fails immediately,
the TRANSIENTexception will occur again, and the pattern will repeat. With re-
peated exceptions, the handler starts adding delays before retries, with exponential
back-off.

In all other circumstances, the default TRANSIENThandler just passes the ex-
ception on to the caller.

You can override the default behaviour by installing your own exception han-
dler. The function to call has signature:

omniORB.installTransientExceptionHandler(cookie, function [, object])

The arguments are a cookie, which is any Python object, a call-back function,
and optionally an object reference. If the object reference is present, the exception
handler is installed for just that object; otherwise the handler is installed for all
objects with no handler of their own.

The call-back function must have the signature

function(cookie, retries, exc) -> boolean

When a TRANSIENTexception occurs, the function is called, passing the cookie
object, a count of how many times the operation has been retried, and the TRAN-
SIENT exception object itself. If the function returns true, the operation is retried;
if it returns false, the original exception is raised in the application. In the case
of a TRANSIENTexception due to a failed location forward, the exception propa-
gated to the application is the original exception that caused the TRANSIENT(e.g. a
COMM_FAILUREor OBJECT_NOT_EXIST), rather than the TRANSIENTexception1.

1This is a change from omniORB 4.0 / omniORBpy 2 and earlier, where it was the TRANSIENT
exception that was propagated to the application.
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4.7.3 CORBA.COMM_FAILURE and CORBA.SystemException

There are two other functions for registering exception handlers: one for CORBA.
COMM_FAILURE, and one for all other exceptions. For both these cases, the default
is for there to be no handler, so exceptions are propagated to the application.

omniORB.installCommFailureExceptionHandler(cookie, function [, object])
omniORB.installSystemExceptionHandler(cookie, function [, object])

In both cases, the call-back function has the same signature as for TRANSIENT
handlers.

4.8 Location forwarding

Any CORBA operation invocation can return a LOCATION_FORWARDmessage to
the caller, indicating that it should retry the invocation on a new object refer-
ence. The standard allows ServantManagers to trigger LOCATION_FORWARDs by
raising the PortableServer.ForwardRequest exception, but it does not pro-
vide a similar mechanism for normal servants. omniORB provides the omniORB.
LOCATION_FORWARDexception for this purpose. It can be thrown by any opera-
tion implementation.

4.9 Dynamic importing of IDL

omniORBpy is usually used with pre-generated stubs. Since Python is a dynamic
language, however, it is possible to compile and import new stubs at run-time.

Dynamic importing is achieved with omniORB.importIDL() and omniORB.
importIDLString() . Their signatures are:

importIDL(filename [, args ]) -> tuple
importIDLString(string [, args ]) -> tuple

The first function compiles and imports the specified file; the second takes a
string containing the IDL definitions. The functions work by forking omniidl and
importing its output2; they both take an optional argument containing a list of
strings which are used as arguments for omniidl. For example, the following com-
mand runs omniidl with an include path set:

m = omniORB.importIDL("test.idl", ["-I/my/include/path"])

Instead of specifying omniidl arguments on each import, you can set the argu-
ments to be used for all calls using the omniORB.omniidlArguments() func-
tion.

Both import functions return a tuple containing the names of the Python mod-
ules that have been imported. The modules themselves can be accessed through
sys.modules . For example:

2omniidl must therefore be available on your path.
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// test.idl
const string s = "Hello";
module M1 {

module M2 {
const long l = 42;

};
};
module M3 {

const short s = 5;
};

From Python:

>>> import sys, omniORB
>>> omniORB.importIDL("test.idl")
(’M1’, ’M1.M2’, ’M3’, ’_GlobalIDL’)
>>> sys.modules["M1.M2"].l
42
>>> sys.modules["M3"].s
5
>>> sys.modules["_GlobalIDL"].s
’Hello’

Note that each time importIDL() or importIDLString() is called, the IDL
definitions are compiled and imported into the associated Python declarations.
The new declarations overwrite any old ones with the same names. This can
cause confusing situations where different modules see different definitions of the
same objects. Although the objects appear identical, they are not, and comparisons
within applications and within omniORBpy unexpectedly fail. You should not use
these functions in more than one module to import the same IDL files.

4.10 C++ API

omniORBpy has a C++ API that can be used by programs that embed Python in
C++, or by C++ extension modules to Python. The API has functions to convert
object references between their Python representation and their C++ representa-
tion. For extensions to omniORBpy itself, it has a mechanism for adding pseudo
object types to omniORBpy.

The definitions used by the C++ API are in the omniORBpy.h header. An
example of its use is in examples/embed/ .

The API is accessed through a singleton structure containing function pointers.
A pointer to the API struct is stored as a PyCObject in the _omnipy module with
the name API . It can be accessed with code like:

PyObject* omnipy = PyImport_ImportModule((char*)"_omnipy");
PyObject* pyapi = PyObject_GetAttrString(omnipy, (char*)"API");
omniORBpyAPI* api = (omniORBpyAPI*)PyCObject_AsVoidPtr(pyapi);
Py_DECREF(pyapi);
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The structure has this definition:

struct omniORBpyAPI {

PyObject* (*cxxObjRefToPyObjRef)(const CORBA::Object_ptr cxx_obj,
CORBA::Boolean hold_lock);

// Convert a C++ object reference to a Python object reference.
// If <hold_lock> is true, caller holds the Python interpreter lock.

CORBA::Object_ptr (*pyObjRefToCxxObjRef)(PyObject* py_obj,
CORBA::Boolean hold_lock);

// Convert a Python object reference to a C++ object reference.
// Raises BAD_PARAM if the Python object is not an object reference.
// If <hold_lock> is true, caller holds the Python interpreter lock.

};
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The IDL compiler

omniORBpy’s IDL compiler is called omniidl. It consists of a generic front-end
parser written in C++, and a number of back-ends written in Python. omniidl is
very strict about IDL validity, so you may find that it reports errors in IDL which
compiles fine with other IDL compilers.

The general form of an omniidl command line is:

omniidl [options] -b <back-end> [back-end options] <file 1> <file 2> . . .

5.1 Common options

The following options are common to all back-ends:

-b back-end Run the specified back-end. For omniORBpy, use -bpython .
-D name[=value] Define name for the preprocessor.
-U name Undefine name for the preprocessor.
-I dir Include dir in the preprocessor search path.
-E Only run the preprocessor, sending its output to stdout.
-Y cmd Use cmd as the preprocessor, rather than the normal C preprocessor.
-N Do not run the preprocessor.
-T Use a temporary file, not a pipe, for preprocessor output.
-Wparg[,arg. . . ] Send arguments to the preprocessor.
-Wbarg[,arg. . . ] Send arguments to the back-end.
-nf Do not warn about unresolved forward declarations.
-k Keep comments after declarations, to be used by some back-ends.
-K Keep comments before declarations, to be used by some back-ends.
-C dir Change directory to dir before writing output files.
-d Dump the parsed IDL then exit, without running a back-end.
-p dir Use dir as a path to find omniidl back-ends.
-V Print version information then exit.
-u Print usage information.

37
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-v Verbose: trace compilation stages.

Most of these options are self explanatory, but some are not so obvious.

5.1.1 Preprocessor interactions

IDL is processed by the C preprocessor before omniidl parses it. omniidl always
uses the GNU C preprocessor (which it builds with the name omnicpp). The -D ,
-U , and -I options are just sent to the preprocessor. Note that the current directory
is not on the include search path by default—use ‘-I. ’ for that. The -Y option can
be used to specify a different preprocessor to omnicpp. Beware that line directives
inserted by other preprocessors are likely to confuse omniidl.

5.1.1.1 Windows 9x

The output from the C preprocessor is normally fed to the omniidl parser through
a pipe. On some Windows 98 machines (but not all!) the pipe does not work, and
the preprocessor output is echoed to the screen. When this happens, the omniidl
parser sees an empty file, and produces useless stub files with strange long names.
To avoid the problem, use the ‘-T ’ option to create a temporary file between the
two stages.

5.1.2 Forward-declared interfaces

If you have an IDL file like:

interface I;
interface J {

attribute I the_I;
};

then omniidl will normally issue a warning:

test.idl:1: Warning: Forward declared interface ‘I’ was never
fully defined

It is illegal to declare such IDL in isolation, but it is valid to define interface I in a
separate file. If you have a lot of IDL with this sort of construct, you will drown
under the warning messages. Use the -nf option to suppress them.

5.1.3 Comments

By default, omniidl discards comments in the input IDL. However, with the -k
and -K options, it preserves the comments for use by the back-ends. The Python
back-end ignores this information, but it is relatively easy to write new back-ends
which do make use of comments.
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The two different options relate to how comments are attached to declarations
within the IDL. Given IDL like:

interface I {
void op1();
// A comment
void op2();

};

the -k flag will attach the comment to op1() ; the -K flag will attach it to op2() .

5.2 Python back-end options

When you specify the Python back-end (with -bpython ), the following -Wb op-
tions are available. Note that the -Wb options must be specified after the -bpython
option, so omniidl knows which back-end to give the arguments to.

-Wbstdout Send the generated stubs to standard output, rather than to a file.
-Wbinline Output stubs for #included files in line with the main file.
-Wbglobal= g Use g as the name for the global IDL scope (default _GlobalIDL ).
-Wbpackage= p Put both Python modules and stub files in package p.
-Wbmodules= p Put Python modules in package p.
-Wbstubs= p Put stub files in package p.

The -Wbstdout option is not really useful if you are invoking omniidl your-
self. It is used by omniORB.importIDL() , described in section 4.9.

When you compile an IDL file which #includes other IDL files, omniidl nor-
mally only generates code for the main file, assuming that code for the included
files will be generated separately. Instead, you can use the -Wbinline option to
generate code for the main IDL file and all included files in a single stub file.

Definitions declared at IDL global scope are normally placed in a Python mod-
ule named ‘_GlobalIDL ’. The -Wbglobal allows you to change that.

As explained in section 2.2, when you compile an IDL file like:

// example_echo.idl
module Example {

interface Echo {
string echoString(in string mesg);

};
};

omniidl generates directories named Example and Example__POA , which pro-
vide the standard Python mapping modules, and also the file example_echo_
idl.py which contains the actual definitions. The latter file contains code which
inserts the definitions in the standard modules. This arrangement means that it is
not possible to move all of the generated code into a Python package by simply
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placing the files in a suitably named directory. You may wish to do this to avoid
clashes with names in use elsewhere in your software.

You can place all generated code in a package using the -Wbpackage com-
mand line option. For example,

omniidl -bpython -Wbpackage=generated echo_example.idl

creates a directory named ‘generated ’, containing the generated code. The stub
module is now called ‘generated.Example ’, and the actual stub definitions are
in ‘generated.example_echo_idl ’. If you wish to split the modules and the
stub definitions into different Python packages, you can use the -Wbmodules and
-Wbstubs options.

Note that if you use these options to change the module package, the interface
to the generated code is not strictly-speaking CORBA compliant. You may have to
change your code if you ever use a Python ORB other than omniORBpy.

5.3 Examples

Generate the Python stubs for a file a.idl :

omniidl -bpython a.idl

As above, but put the stubs in a package called ‘stubs ’:

omniidl -bpython -Wbstubs=stubs a.idl

Generate both Python and C++ stubs for two IDL files:

omniidl -bpython -bcxx a.idl b.idl

Just check the IDL files for validity, generating no output:

omniidl a.idl b.idl
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Interoperable Naming Service

omniORB supports the Interoperable Naming Service (INS). The following is a
summary of its facilities.

6.1 Object URIs

As well as accepting IOR-format strings, orb.string_to_object() now also
supports two new Uniform Resource Identifier (URI) [BLFIM98] formats, which
can be used to specify objects in a convenient human-readable form. The existing
IOR-format strings are now also considered URIs.

6.1.1 corbaloc

corbaloc URIs allow you to specify object references which can be contacted by
IIOP, or found through ORB::resolve_initial_references() . To specify
an IIOP object reference, you use a URI of the form:

corbaloc:iiop: <host>: <port>/ <object key>

for example:

corbaloc:iiop:myhost.example.com:1234/MyObjectKey

which specifies an object with key ‘MyObjectKey’ within a process running on
myhost.example.com listening on port 1234. Object keys containing non-ASCII
characters can use the standard URI % escapes:

corbaloc:iiop:myhost.example.com:1234/My%efObjectKey

denotes an object key with the value 239 (hex ef) in the third octet.
The protocol name ‘iiop ’ can be abbreviated to the empty string, so the origi-

nal URI can be written:
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corbaloc::myhost.example.com:1234/MyObjectKey

The IANA has assigned port number 28091 for use by corbaloc , so if the server is
listening on that port, you can leave the port number out. The following two URIs
refer to the same object:

corbaloc::myhost.example.com:2809/MyObjectKey
corbaloc::myhost.example.com/MyObjectKey

You can specify an object which is available at more than one location by separating
the locations with commas:

corbaloc::myhost.example.com,:localhost:1234/MyObjectKey

Note that you must restate the protocol for each address, hence the ‘: ’ before
‘localhost ’. It could equally have been written ‘iiop:localhost ’.

You can also specify an IIOP version number:

corbaloc::1.2@myhost.example.com/MyObjectKey

Specifying IIOP versions above 1.0 is slightly risky since higher versions make
use of various information stored in IORs that is not present in a corbaloc URI. It
is generally best to contact initial corbaloc objects with IIOP 1.0, and rely on higher
versions for all other object references.

Alternatively, to use resolve_initial_references() , you use a URI of the
form:

corbaloc:rir:/NameService

6.1.2 corbaname

corbaname URIs cause string_to_object() to look-up a name in a CORBA
Naming service. They are an extension of the corbaloc syntax:

corbaname: <corbaloc location>/ <object key>#<stringified name>

for example:

corbaname::myhost/NameService#project/example/echo.obj
corbaname:rir:/NameService#project/example/echo.obj

The object found with the corbaloc -style portion must be of type CosNaming::
NamingContext , or something derived from it. If the object key (or rir name) is
‘NameService ’, it can be left out:

1Not 2089 as printed in [OMG00]!
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corbaname::myhost#project/example/echo.obj
corbaname:rir:#project/example/echo.obj

The stringified name portion can also be left out, in which case the URI denotes the
CosNaming::NamingContext which would have been used for a look-up:

corbaname::myhost.example.com
corbaname:rir:

The first of these examples is the easiest way of specifying the location of a naming
service.

6.2 Configuring resolve_initial_references

The INS specifies two standard command line arguments which provide a portable
way of configuring ORB::resolve_initial_references() :

6.2.1 ORBInitRef

-ORBInitRef takes an argument of the form <ObjectId>=<ObjectURI>. So, for
example, with command line arguments of:

-ORBInitRef NameService=corbaname::myhost.example.com

resolve_initial_references("NameService") will return a reference to
the object with key ‘NameService’ available on myhost.example.com, port 2809.
Since IOR-format strings are considered URIs, you can also say things like:

-ORBInitRef NameService=IOR:00ff...

6.2.2 ORBDefaultInitRef

-ORBDefaultInitRef provides a prefix string which is used to resolve other-
wise unknown names. When resolve_initial_references() is unable to
resolve a name which has been specifically configured (with -ORBInitRef ), it
constructs a string consisting of the default prefix, a ‘/ ’ character, and the name
requested. The string is then fed to string_to_object() . So, for example, with
a command line of:

-ORBDefaultInitRef corbaloc::myhost.example.com

a call to resolve_initial_references("MyService") will return the object
reference denoted by ‘corbaloc::myhost.example.com/MyService ’.

Similarly, a corbaname prefix can be used to cause look-ups in the naming
service. Note, however, that since a ‘/ ’ character is always added to the prefix, it
is impossible to specify a look-up in the root context of the naming service—you
have to use a sub-context, like:
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-ORBDefaultInitRef corbaname::myhost.example.com#services

6.3 omniNames

6.3.1 NamingContextExt

omniNames supports the CosNaming::NamingContextExt interface:

module CosNaming {
interface NamingContextExt : NamingContext {

typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);
Name to_name (in StringName sn) raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

};
};

to_string() and to_name() convert from CosNaming::Name sequences
to flattened strings and vice-versa. Calling these operations involves remote calls
to the naming service, so they are not particularly efficient. The omniORB.URI
module contains equivalent nameToString() and stringToName() functions,
which do not involve remote calls.

A CosNaming::Name is stringified by separating name components with ‘/ ’
characters. The kind and id fields of each component are separated by ‘. ’ char-
acters. If the kind field is empty, the representation has no trailing ‘. ’; if the id
is empty, the representation starts with a ‘. ’ character; if both id and kind are
empty, the representation is just a ‘. ’. The backslash ‘\ ’ is used to escape the mean-
ing of ‘/ ’, ‘. ’ and ‘\ ’ itself.

to_url() takes a corbaloc style address and key string (but without the
corbaloc: part), and a stringified name, and returns a corbaname URI (incor-
rectly called a URL) string, having properly escaped any invalid characters. The
specification does not make it clear whether or not the address string should also
be escaped by the operation; omniORB does not escape it. For this reason, it is best
to avoid calling to_url() if the address part contains escapable characters. The
local function omniORB.URI.addrAndNameToURI() is equivalent.

resolve_str() is equivalent to calling to_name() followed by the inherited
resolve() operation. There are no string-based equivalents of the various bind
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operations.

6.3.2 Use with corbaname

To make it easy to use omniNames with corbaname URIs, it starts with the default
port of 2809, and an object key of ‘NameService ’ for the root naming context.

6.4 omniMapper

omniMapper is a simple daemon which listens on port 2809 (or any other port),
and redirects IIOP requests for configured object keys to associated persistent IORs.
It can be used to make a naming service (even an old non-INS aware version of
omniNames or other ORB’s naming service) appear on port 2809 with the object
key ‘NameService ’. The same goes for any other service you may wish to specify,
such as an interface repository. omniMapper is started with a command line of:

omniMapper [-port <port>] [-config <config file>] [-v]

The -port option allows you to choose a port other than 2809 to listen on. The
-config option specifies a location for the configuration file. The default name is
/etc/omniMapper.cfg , or C:\omniMapper.cfg on Windows. omniMapper
does not normally print anything; the -v option makes it verbose so it prints con-
figuration information and a record of the redirections it makes, to standard out-
put.

The configuration file is very simple. Each line contains a string to be used as
an object key, some white space, and an IOR (or any valid URI) that it will redirect
that object key to. Comments should be prefixed with a ‘#’ character. For example:

# Example omniMapper.cfg
NameService IOR:000f...
InterfaceRepository IOR:0100...

omniMapper can either be run on a single machine, in much the same way as
omniNames, or it can be run on every machine, with a common configuration file.
That way, each machine’s omniORB configuration file could contain the line:

ORBDefaultInitRef corbaloc::localhost

6.5 Creating objects with simple object keys

In normal use, omniORB creates object keys containing various information in-
cluding POA names and various non-ASCII characters. Since object keys are sup-
posed to be opaque, this is not usually a problem. The INS breaks this opacity and
requires servers to create objects with human-friendly keys.
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If you wish to make your objects available with human-friendly URIs, there
are two options. The first is to use omniMapper as described above, in conjunc-
tion with a PERSISTENTPOA. The second is to create objects with the required
keys yourself. You do this with a special POA with the name ‘omniINSPOA’, ac-
quired from resolve_initial_references() . This POA has the USER_ID
and PERSISTENTpolicies, and the special property that the object keys it creates
contain only the object ids given to the POA, and no other data. It is a normal POA
in all other respects, so you can activate/deactivate it, create children, and so on,
in the usual way.

Children of the omniINSPOA do not inherit its special properties of creating
simple object keys. If the omniINSPOA’s policies are not suitable for your applica-
tion, you cannot create a POA with different policies (such as single threading, for
example), and still generate simple object keys. Instead, you can activate a servant
in the omniINSPOA that uses location forwarding to redirect requests to objects in
a different POA.



Chapter 7

Connection and Thread
Management

This chapter describes how omniORB manages threads and network connections.

7.1 Background

In CORBA, the ORB is the ‘middleware’ that allows a client to invoke an operation
on an object without regard to its implementation or location. In order to invoke
an operation on an object, a client needs to ‘bind’ to the object by acquiring its
object reference. Such a reference may be obtained as the result of an operation on
another object (such as a naming service or factory object) or by conversion from a
stringified representation. If the object is in a different address space, the binding
process involves the ORB building a proxy object in the client’s address space. The
ORB arranges for invocations on the proxy object to be transparently mapped to
equivalent invocations on the implementation object.

For the sake of interoperability, CORBA mandates that all ORBs should support
IIOP as the means to communicate remote invocations over a TCP/IP connection.
IIOP is usually1 asymmetric with respect to the roles of the parties at the two ends
of a connection. At one end is the client which can only initiate remote invocations.
At the other end is the server which can only receive remote invocations.

Notice that in CORBA, as in most distributed systems, remote bindings are
established implicitly without application intervention. This provides the illusion
that all objects are local, a property known as ‘location transparency’. CORBA
does not specify when such bindings should be established or how they should be
multiplexed over the underlying network connections. Instead, ORBs are free to
implement implicit binding by a variety of means.

The rest of this chapter describes how omniORB manages network connections
and the programming interface to fine tune the management policy.

1GIOP 1.2 supports ‘bidirectional GIOP’, which permits the rôles to be reversed.

47



48 CHAPTER 7. CONNECTION AND THREAD MANAGEMENT

7.2 The model

omniORB is designed from the ground up to be fully multi-threaded. The objec-
tive is to maximise the degree of concurrency and at the same time eliminate any
unnecessary thread overhead. Another objective is to minimise the interference
by the activities of other threads on the progress of a remote invocation. In other
words, thread ‘cross-talk’ should be minimised within the ORB. To achieve these
objectives, the degree of multiplexing at every level is kept to a minimum by de-
fault.

Minimising multiplexing works well when the ORB is relatively lightly loaded.
However, when the ORB is under heavy load, it can sometimes be beneficial to
conserve operating system resources such as threads and network connections by
multiplexing at the ORB level. omniORB has various options that control its mul-
tiplexing behaviour.

7.3 Client side behaviour

On the client side of a connection, the thread that invokes on a proxy object drives
the GIOP protocol directly and blocks on the connection to receive the reply. The
first time the client makes a call to a particular address space, the ORB opens a
suitable connection to the remote address space (based on the client transport rule
as described in section 7.7.1). After the reply has been received, the ORB caches
the open network connection, ready for use by another call.

If two (or more) threads in a multi-threaded client attempt to contact the same
address space simultaneously, there are two different ways to proceed. The de-
fault way is to open another network connection to the server. This means that
neither the client or server ORB has to perform any multiplexing on the network
connections—multiplexing is performed by the operating system, which has to
deal with multiplexing anyway. The second possibility is for the client to multiplex
the concurrent requests on a single network connection. This conserves operating
system resources (network connections), but means that both the client and server
have to deal with multiplexing issues themselves.

In the default one call per connection mode, there is a limit to the number
of concurrent connections that are opened, set with the maxGIOPConnection
PerServer parameter. To tell the ORB that it may multiplex calls on a single con-
nection, set the oneCallPerConnection parameter to zero. If the oneCallPer
Connection parameter is set to the default value of one, and there are more
concurrent calls than specified by maxGIOPConnectionPerServer , calls block
waiting for connections to become free.

Note that some server-side ORBs, including omniORB versions before version
4.0, are unable to deal with concurrent calls multiplexed on a single connection, so
they serialise the calls. It is usually best to keep to the default mode of opening
multiple connections.
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7.3.1 Client side timeouts

omniORB can associate a timeout with a call, meaning that if the call takes too long
a TRANSIENTexception is thrown. Timeouts can be set for the whole process, for
a specific thread, or for a specific object reference.

Timeouts are set using functions in the omniORBmodule:

omniORB.setClientCallTimeout(millisecs)
omniORB.setClientCallTimeout(objref, millisecs)
omniORB.setClientThreadCallTimeout(millisecs)
omniORB.setClientConnectTimeout(millisecs)

setClientCallTimeout() sets either the global timeout or the timeout for
a specific object reference. setClientThreadCallTimeout() sets the timeout
for the calling thread. Setting any timeout value to zero disables it.

Accessing per-thread state is a relatively expensive operation, so per thread
timeouts are disabled by default. The supportPerThreadTimeOut parameter
must be set true to enable them.

To choose the timeout value to use for a call, the ORB first looks to see if there
is a timeout for the object reference, then to the calling thread, and finally to the
global timeout.

When a client has no existing connection to communicate with a server, it
must open a new connection before performing the call. setClientConnect
Timeout() sets an overriding timeout for cases where a new connection must be
established. The effect of the connect timeout depends upon whether the connect
timeout is greater or less than the timeout that would otherwise be used.

As an example, imagine that the usual call timeout is 10 seconds:

Connect timeout > usual timeout

If the connect timeout is set to 20 seconds, then a call that establishes a new con-
nection will be permitted 20 seconds before it times out. Subsequent calls using the
same connection have the normal 10 second timeout. If establishing the connection
takes 8 seconds, then the call itself takes 5 seconds, the call succeeds despite having
taken 13 seconds in total, longer than the usual timeout.

This kind of configuration is good when connections are slow to be established.
If an object reference has multiple possible endpoints available, and connect-

ing to the first endpoint times out, only that one endpoint will have been tried
before an exception is raised. However, once the timeout has occurred, the object
reference will switch to use the next endpoint. If the application attempts to make
another call, it will use the next endpoint.
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Connect timeout < usual timeout

If the connect timeout is set to 2 seconds, the actual network-level connect is only
permitted to take 2 seconds. As long as the connection is established in less than
2 seconds, the call can proceed. The 10 second call timeout still applies to the time
taken for the whole call (including the connection establishment). So, if establish-
ing the connection takes 1.5 seconds, and the call itself takes 9.5 seconds, the call
will time out because although it met the connection timeout, it exceeded the 10
second total call timeout. On the other hand, if establishing the connection takes 3
seconds, the call will fail after only 2 seconds, since only 2 seconds are permitted
for the connect.

If an object reference has multiple possible endpoints available, the client will
attempt to connect to them in turn, until one succeeds. The connect timeout applies
to each connection attempt. So with a connect timeout of 2 seconds, the client will
spend up to 2 seconds attempting to connect to the first address and then, if that
fails, up to 2 seconds trying the second address, and so on. The 10 second timeout
still applies to the call as a whole, so if the total time taken on timed-out connection
attempts exceeds 10 seconds, the call will time out.

This kind of configuration is useful where calls may take a long time to com-
plete (so call timeouts are long), but a fast indication of connection failure is re-
quired.

7.4 Server side behaviour

The server side has two primary modes of operation: thread per connection and
thread pooling. It is able to dynamically transition between the two modes, and
it supports a hybrid scheme that behaves mostly like thread pooling, but has the
same fast turn-around for sequences of calls as thread per connection.

7.4.1 Thread per connection mode

In thread per connection mode (the default, and the only option in omniORB ver-
sions before 4.0), each connection has a single thread dedicated to it. The thread
blocks waiting for a request. When it receives one, it unmarshals the arguments,
makes the up-call to the application code, marshals the reply, and goes back to
watching the connection. There is thus no thread switching along the call chain,
meaning the call is very efficient.

As explained above, a client can choose to multiplex multiple concurrent calls
on a single connection, so once the server has received the request, and just be-
fore it makes the call into application code, it marks the connection as ‘selectable’,
meaning that another thread should watch it to see if any other requests arrive. If
they do, extra threads are dispatched to handle the concurrent calls. GIOP 1.2 actu-
ally allows the argument data for multiple calls to be interleaved on a connection,
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so the unmarshalling code has to handle that too. As soon as any multiplexing oc-
curs on the connection, the aim of removing thread switching cannot be met, and
there is inevitable inefficiency due to thread switching.

The maxServerThreadPerConnection parameter can be set to limit the
number of threads that can be allocated to a single connection containing concur-
rent calls. Setting the parameter to 1 mimics the behaviour of omniORB versions
before 4.0, that did not support calls multiplexed on one connection.

7.4.2 Thread pool mode

In thread pool mode, selected by setting the threadPerConnectionPolicy pa-
rameter to zero, a single thread watches all incoming connections. When a call
arrives on one of them, a thread is chosen from a pool of threads, and set to work
unmarshalling the arguments and performing the up-call. There is therefore at
least one thread switch for each call.

The thread pool is not pre-initialised. Instead, threads are started on demand,
and idle threads are stopped after a period of inactivity. The maximum number
of threads that can be started in the pool is set with the maxServerThreadPool
Size parameter. The default is 100.

A common pattern in CORBA applications is for a client to make several calls
to a single object in quick succession. To handle this situation most efficiently, the
default behaviour is to not return a thread to the pool immediately after a call
is finished. Instead, it is set to watch the connection it has just served for a short
while, mimicking the behaviour in thread per connection mode. If a new call comes
in during the watching period, the call is dispatched without any thread switch-
ing, just as in thread per connection mode. Of course, if the server is supporting
a very large number of connections (more than the size of the thread pool), this
policy can delay a call coming from another connection. If the threadPoolWatch
Connection parameter is set to zero, connection watching is disabled and threads
return to the pool immediately after finishing a single request.

In the face of multiplexed calls on a single connection, multiple threads from
the pool can be dispatched for one connection, just as in thread per connection
mode. With threadPoolWatchConnection set to the default value of 1, only
the last thread servicing a connection will watch it when it finishes a request. Set-
ting the parameter to a larger number allows the last n connections to watch the
connection.

7.4.3 Policy transition

If the server is dealing with a relatively small number of connections, it is most
efficient to use thread per connection mode. If the number of connections becomes
too large, however, operating system limits on the number of threads may cause
a significant slowdown, or even prevent the acceptance of new connections alto-
gether.
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To give the most efficient response in all circumstances, omniORB allows a
server to start in thread per connection mode, and transition to thread pooling
if many connections arrive. This is controlled with the threadPerConnection
UpperLimit and threadPerConnectionLowerLimit parameters. The former
must always be larger than the latter. The upper limit chooses the number of con-
nections at which time the ORB transitions to thread pool mode; the lower limit
selects the point at which the transition back to thread per connection is made.

For example, setting the upper limit to 50 and the lower limit to 30 would mean
that the first 49 connections would receive dedicated threads. The 50th to arrive
would trigger thread pooling. All future connections to arrive would make use of
threads from the pool. Note that the existing dedicated threads continue to service
their connections until the connections are closed. If the number of connections
falls below 30, thread per connection is reactivated and new connections receive
their own dedicated threads (up to the limit of 50 again). Once again, existing
connections in thread pool mode stay in that mode until they are closed.

7.5 Idle connection shutdown

It is wasteful to leave a connection open when it has been left unused for a con-
siderable time. Too many idle connections could block out new connections when
it runs out of spare communication channels. For example, most platforms have
a limit on the number of file handles a process can open. Many platforms have a
very small default limit like 64. The value can often be increased to a maximum of
a thousand or more by changing the ‘ulimit’ in the shell.

Every so often, a thread scans all open connections to see which are idle. The
scanning period (in seconds) is set with the scanGranularity parameter. The
default is 5 seconds.

Outgoing connections (initiated by clients) and incoming connections (initiated
by servers) have separate idle timeouts. The timeouts are set with the outConScan
Period and inConScanPeriod parameters respectively. The values are in sec-
onds, and must be a multiple of the scan granularity.

7.5.1 Interoperability Considerations

The IIOP specification allows both the client and the server to shutdown a connec-
tion unilaterally. When one end is about to shutdown a connection, it should send
a CloseConnection message to the other end. It should also make sure that the
message will reach the other end before it proceeds to shutdown the connection.

The client should distinguish between an orderly and an abnormal connec-
tion shutdown. When a client receives a CloseConnection message before the con-
nection is closed, the condition is an orderly shutdown. If the message is not re-
ceived, the condition is an abnormal shutdown. In an abnormal shutdown, the
ORB should raise a COMM_FAILUREexception whereas in an orderly shutdown,
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the ORB should not raise an exception and should try to re-establish a new connec-
tion transparently.

omniORB implements these semantics completely. However, it is known that
some ORBs are not (yet) able to distinguish between an orderly and an abnor-
mal shutdown. Usually this is manifested as the client in these ORBs seeing a
COMM_FAILUREoccasionally when connected to an omniORB server. The work-
around is either to catch the exception in the application code and retry, or to turn
off the idle connection shutdown inside the omniORB server.

7.6 Transports and endpoints

omniORB can support multiple network transports. All platforms (usually) have a
TCP transport available. Unix platforms support a Unix domain socket transport.
Platforms with the OpenSSL library available can support an SSL transport.

Servers must be configured in two ways with regard to transports: the trans-
ports and interfaces on which they listen, and the details that are published in IORs
for clients to see. Usually the published details will be the same as the listening de-
tails, but there are times when it is useful to publish different information.

Details are selected with the endPoint family of parameters. The simplest is
plain endPoint , which chooses a transport and interface details, and publishes
the information in IORs. Endpoint parameters are in the form of URIs, with a
scheme name of ‘giop: ’, followed by the transport name. Different transports
have different parameters following the transport.

TCP endpoints have the format:

giop:tcp: <host>: <port>

The host must be a valid host name or IP address for the server machine. It de-
termines the network interface on which the server listens. The port selects the
TCP port to listen on, which must be unoccupied. Either the host or port, or both
can be left empty. If the host is empty, the ORB publishes the IP address of the
first non-loopback network interface it can find (or the loopback if that is the only
interface), but listens on all network interfaces. If the port is empty, the operating
system chooses a port.

Multiple TCP endpoints can be selected, either to specify multiple network in-
terfaces on which to listen, or (less usefully) to select multiple TCP ports on which
to listen.

If no endPoint parameters are set, the ORB assumes a single parameter of
giop:tcp:: , meaning IORs contain the address of the first non-loopback network
interface, the ORB listens on all interfaces, and the OS chooses a port number.

SSL endpoints have the same format as TCP ones, except ‘tcp ’ is replaced with
‘ssl ’. Unix domain socket endpoints have the format:

giop:unix: <filename>
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where the filename is the name of the socket within the filesystem. If the filename
is left blank, the ORB chooses a name based on the process id and a timestamp.

To listen on an endpoint without publishing it in IORs, specify it with the
endPointNoPublish configuration parameter. See below for more details about
endpoint publishing.

7.6.1 IPv6

On platforms where it is available, omniORB supports IPv6. On most Unix plat-
forms, IPv6 sockets accept both IPv6 and IPv4 connections, so omniORB’s default
giop:tcp:: endpoint accepts both IPv4 and IPv6 connections. On Windows ver-
sions before Windows Vista, each socket type only accepts incoming connections
of the same type, so an IPv6 socket cannot be used with IPv4 clients. For this rea-
son, the default giop:tcp:: endpoint only listens for IPv4 connections. Since
endpoints with a specific host name or address only listen on a single network
interface, they are inherently limited to just one protocol family.

To explicitly ask for just IPv4 or just IPv6, an endpoint with the wildcard ad-
dress for the protocol family should be used. For IPv4, the wildcard address is
‘0.0.0.0 ’, and for IPv6 it is ‘:: ’. So, to listen for IPv4 connections on all IPv4
network interfaces, use an endpoint of:

giop:tcp:0.0.0.0:

All IPv6 addresses contain colons, so the address portion in URIs must be con-
tained within [] characters. Therefore, to listen just for IPv6 connections on all
IPv6 interfaces, use the somewhat cryptic:

giop:tcp:[::]:

To listen for both IPv4 and IPv6 connections on Windows versions prior to Vista,
both endpoints must be explicitly provided.

7.6.2 Endpoint publishing

For clients to be able to connect to a server, the server publishes endpoint informa-
tion in its IORs (Interoperable Object References). Normally, omniORB publishes
the first available address for each of the endpoints it is listening on.

The endpoint information to publish is determined by the endPointPublish
configuration parameter. It contains a comma-separated list of publish rules. The
rules are applied in turn to each of the configured endpoints; if a rule matches an
endpoint, it causes one or more endpoints to be published.

The following core rules are supported:
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addr the first natural address of the endpoint
ipv4 the first IPv4 address of a TCP or SSL endpoint
ipv6 the first IPv6 address of a TCP or SSL endpoint
name the first address that can be resolved to a name
hostname the result of the gethostname() system call
fqdn the fully-qualified domain name

The core rules can be combined using the vertical bar operator to try several rules
in turn until one succeeds. e.g:

name|ipv6|ipv4 the name of the endpoint if it has one; failing that, its
first IPv6 address; failing that, its first IPv4 address.

Multiple rules can be combined using the comma operator to publish more than
one endpoint. e.g.

name,addr the name of the endpoint (if it has one), followed by
its first address.

For endpoints with multiple addresses (e.g. TCP endpoints on multi-homed ma-
chines), the all() manipulator causes all addresses to be published. e.g.:

all(addr) all addresses are published
all(name) all addresses that resolve to names are published
all(name|addr) all addresses are published by name if they have one,

address otherwise.
all(name,addr) all addresses are published by name (if they have

one), and by address.
all(name),
all(addr)

first the names of all addresses are published, fol-
lowed by all the addresses.

A specific endpoint can be published by giving its endpoint URI, even if the server
is not listening on that endpoint. e.g.:

giop:tcp:not.my.host:12345
giop:unix:/not/my/socket-file

If the host or port number for a TCP or SSL URI are missed out, they are filled
in with the details from each listening TCP/SSL endpoint. This can be used to
publish a different name for a TCP/SSL endpoint that is using an ephemeral port,
for example.

omniORB 4.0 supported two options related to endpoint publishing that are su-
perseded by the endPointPublish parameter, and so are now deprecated. Set-
ting endPointPublishAllIFs to 1 is equivalent to setting endPointPublish
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to ‘all(addr) ’. The endPointNoListen parameter is equivalent to adding end-
point URIs to the endPointPublish parameter.

7.7 Connection selection and acceptance

In the face of IORs containing details about multiple different endpoints, clients
have to know how to choose the one to use to connect a server. Similarly, servers
may wish to restrict which clients can connect to particular transports. This is
achieved with transport rules.

7.7.1 Client transport rules

The clientTransportRule parameter is used to filter and prioritise the order
in which transports specified in an IOR are tried. Each rule has the form:

<address mask> [action]+

The address mask can be one of

1. localhost The address of this machine
2. w.x.y.z/ m1.m2.m3.m4 An IPv4 address with bits selected by the

mask, e.g. 172.16.0.0/255.240.0.0
3. w.x.y.z/ prefixlen An IPv4 address with prefixlen significant

bits, e.g. 172.16.2.0/24
4. a:b:c:d:e:f:g:h/ prefixlen An IPv6 address with prefixlen significant

bits, e.g. 3ffe:505:2:1::/64
5. * Wildcard that matches any address

The action is one or more of the following:

1. none Do not use this address
2. tcp Use a TCP transport
3. ssl Use an SSL transport
4. unix Use a Unix socket transport
5. bidir Connections to this address can be used

bidirectionally (see section 7.8)

The transport-selecting actions form a prioritised list, so an action of ‘unix,ssl,
tcp ’ means to use a Unix transport if there is one, failing that a SSL transport,
failing that a TCP transport. In the absence of any explicit rules, the client uses the
implicit rule of ‘* unix,ssl,tcp ’.

If more than one rule is specified, they are prioritised in the order they are
specified. For example, the configuration file might contain:
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clientTransportRule = 192.168.1.0/255.255.255.0 unix,tcp
clientTransportRule = 172.16.0.0/255.240.0.0 unix,tcp

= * none

This would be useful if there is a fast network (192.168.1.0) which should be used
in preference to another network (172.16.0.0), and connections to other networks
are not permitted at all.

In general, the result of filtering the endpoint specifications in an IOR with
the client transport rule will be a prioritised list of transports and networks. (If
the transport rules do not prioritise one endpoint over another, the order the end-
points are listed in the IOR is used.) When trying to contact an object, the ORB
tries its possible endpoints in turn, until it finds one with which it can contact the
object. Only after it has unsuccessfully tried all permissible endpoints will it raise
a TRANSIENTexception to indicate that the connect failed.

7.7.2 Server transport rules

The server transport rules have the same format as client transport rules. Rather
than being used to select which of a set of ways to contact a machine, they are used
to determine whether or not to accept connections from particular clients. In this
example, we only allow connections from our intranet:

serverTransportRule = localhost unix,tcp,ssl
= 172.16.0.0/255.240.0.0 tcp,ssl
= * none

And in this one, we accept only SSL connections if the client is not on the intranet:

serverTransportRule = localhost unix,tcp,ssl
= 172.16.0.0/255.240.0.0 tcp,ssl
= * ssl,bidir

In the absence of any explicit rules, the server uses the implicit rule of ‘* unix,
ssl,tcp ’, meaning any kind of connection is accepted from any client.

7.8 Bidirectional GIOP

omniORB supports bidirectional GIOP, which allows callbacks to be made using a
connection opened by the original client, rather than the normal model where the
server opens a new connection for the callback. This is important for negotiating
firewalls, since they tend not to allow connections back on arbitrary ports.

There are several steps required for bidirectional GIOP to be enabled for a call-
back. Both the client and server must be configured correctly. On the client side,
these conditions must be met:
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• The offerBiDirectionalGIOP parameter must be set to true.

• The client transport rule for the target server must contain the bidir action.

• The POA containing the callback object (or objects) must have been created
with a BidirectionalPolicy value of BOTH.

On the server side, these conditions must be met:

• The acceptBiDirectionalGIOP parameter must be set to true.

• The server transport rule for the requesting client must contain the bidir
action.

• The POA hosting the object contacted by the client must have been created
with a BidirectionalPolicy value of BOTH.

7.9 SSL transport

omniORB supports an SSL transport, using OpenSSL. It is only built if OpenSSL is
available. On platforms using Autoconf, it is autodetected in many locations, or its
location can be given with the --with-openssl= argument to configure . On
other platforms, the OPEN_SSL_ROOTmake variable must be set in the platform
file.

To use the SSL transport from Python you must import and set parameters in
the omniORB.sslTP module before calling CORBA.ORB_init() . To initialise the
module, you must call the certificate_authority_file() , key_file()
and key_file_password() functions, providing the file names of the certificate
authority and encryption keys, and the key file password.



Chapter 8

Code set conversion

omniORB supports full code set negotiation, used to select and translate between
different character code sets, for the transmission of chars, strings, wchars and
wstrings. The support is mostly transparent to application code, but there are a
number of options that can be selected. This chapter covers the options, and also
gives some pointers about how to implement your own code sets, in case the ones
that come with omniORB are not sufficient.

8.1 Native code set

For the ORB to know how to handle strings given to it by the application, it must
know what code set they are represented with, so it can properly translate them if
need be. The default is ISO 8859-1 (Latin 1). A different code sets can be chosen at
initialisation time with the nativeCharCodeSet parameter. The supported code
sets are printed out at initialisation time if the ORB traceLevel is 15 or greater.

For most applications, the default is fine. Some applications may need to set
the native char code set to UTF-8, allowing the full Unicode range to be supported
in strings.

In omniORBpy, wchar and wstring are always represented by the Python Uni-
code type, so there is no need to select a native code set for wchar.

8.2 Code set library

To save space in the main ORB core library, most of the code set implementations
are in a separate library. To load it from Python, you must import the omniORB.
codesets module before calling CORBA.ORB_init() .
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8.3 Implementing new code sets

Code sets must currently be implemented in C++. See the omniORB for C++ doc-
umentation for details.



Chapter 9

Interceptors

omniORBpy has limited interceptor support. Interceptors permit the application to
insert processing at various points along the call chain, as requests are processed.
The Portable Interceptors API is not yet supported.

Interceptors are registered using functions in the omniORB.interceptors
module:

addClientSendRequest()
addClientReceiveReply()
addServerReceiveRequest()
addServerSendReply()
addServerSendException()

To register an interceptor function, call the relevant registration function with
a callable argument. The callable will be called with two or three arguments. The
first argument is the name of the operation being invoked; the second is the set of
service contexts to be retrieved or filled in. ServerSendException has a third
argument, the repository id of the exception being thrown.

When receiving service contexts (in the ClientReceiveReply and Server
ReceiveRequest interceptors), the second argument is a tuple of 2-tuples. In
each 2-tuple, the first item is the service context id and the second item is the
CDR encapsulation of the service context. The encapsulation can be decoded with
omniORB.cdrUnmarshal() (but only if you know the type to decode it to).

When sending service contexts (ClientSendRequest , ServerSendReply ,
and ServerSendException ), the second argument is an empty list. The inter-
ceptor function can choose to add one or more service context tuples, with the
same form described above, by appending to the list. Encapsulations are created
with omniORB.cdrMarshal() .

Interceptor registration functions may only be called before the ORB is ini-
tialised. Attempting to call them later results in a BAD_INV_ORDERexception.
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Chapter 10

Objects by value

omniORBpy 3 supports objects by value, declared with the valuetype keyword
in IDL. This chapter outlines some issues to do with using valuetypes in omni-
ORB. You are assumed to have read the relevant parts of the CORBA specification,
specifically chapters 4 and 5 of the CORBA 2.6 specification, and section 1.3.10 of
the Python language mapping, version 1.2.

10.1 Features

omniORB supports the complete objects by value specification, with the exception
of custom valuetypes. All other features including value boxes, value sharing se-
mantics, abstract valuetypes, and abstract interfaces are supported.

10.2 Value sharing and local calls

When valuetypes are passed as parameters in CORBA calls (i.e. calls on CORBA
objects declared with interface in IDL), the structure of related values is main-
tained. Consider, for example, the following IDL definitions (which are from the
example code in src/examples/valuetype/simple :

module ValueTest {
valuetype One {

public string s;
public long l;

};

interface Test {
One op1(in One a, in One b);

};
};

If the client to the Test object passes the same value in both parameters, just
one value is transmitted, and the object implementation receives a copy of the sin-
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gle value, with references to it in both parameters.
In the case that the object is remote from the client, there is obviously a copying

step involved. In the case that the object is in the same address space as the client,
the same copying semantics must be maintained so that the object implementation
can modify the values it receives without the client seeing the modifications. To
support that, omniORB must copy the entire parameter list in one operation, in
case there is sharing between different parameters. Such copying is a rather more
time-consuming process than the parameter-by-parameter copy that takes place in
calls not involving valuetypes.

To avoid the overhead of copying parameters in this way, applications can
choose to relax the semantics of value copying in local calls, so values are not
copied at all, but are passed by reference. In that case, the client to a call will
see any modifications to the values it passes as parameters (and similarly, the ob-
ject implementation will see any changes the client makes to returned values). To
choose this option, set the copyValuesInLocalCalls configuration parameter
to zero.

10.3 Value factories

As specified in section 1.3.10 of the Python language mapping (version 1.2), facto-
ries are automatically registered for values with no operations. This means that in
common usage where values are just used to hold state, the application code does
not need to implement and register factories. The application may still register
different factories if it requires.

If the IDL definitions specify operations on values, the application is supposed
to provide implementations of the operations, meaning that it must register suit-
able factories. If the application chooses to ignore the operations and just manip-
ulate the data inside the values, omniidl can be asked to register factories for all
values, not just ones with no operations, using the -Wbfactories option.

The Python language mapping says a value factory should be “a class instance
with a __call__ method taking no arguments”. omniORBpy is less restrictive
than that, and permits the use of any callable object, in particular the value imple-
mentation class itself.

10.4 Standard value boxes

The standard CORBA.StringValue and CORBA.WStringValue value boxes are
available to application code. To make the definitions available in IDL, #include
the standard orb.idl .
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10.5 Values inside Anys

Valuetypes inserted into Anys cause a number of interesting issues. Even when
inside Anys, values are required to support complete sharing semantics. Take this
IDL for example:

module ValueTest {
valuetype One {

public string s;
public long l;

};

interface AnyTest {
void op1(in One v, in Any a);

};
};

Now, suppose the client behaves as follows:

v = One_impl("hello", 123)
a = CORBA.Any(ValueTest._tc_One, v)
obj.op1(v, a)

then on the server side:

class AnyTest_impl:
...
def op1(self, v, a):

v2 = a.value()
assert v2 == v

This is all very well in this kind of simple situation, but problems can arise if trun-
catable valuetypes are used. Imagine this derived value:

module ValueTest {
valuetype Two : truncatable One {

public double d;
};

};

Now, suppose that the client shown above sends an instance of valuetype Two in
both parameters, and suppose that the server has not seen the definition of val-
uetype Two. In this situation, as the first parameter is unmarshalled, it will be
truncated to valuetype One, as required. Now, when the Any is unmarshalled, it
refers to the same value, which has been truncated. So, even though the TypeCode
in the Any indicates that the value has type Two, the stored value actually has type
One. If the receiver of the Any tries to pass it on, transmission will fail because the
Any’s value does not match its TypeCode.

In the opposite situation, where an Any parameter comes before a valuetype
parameter, a different problem occurs. In that case, as the Any is unmarshalled,
there is no type information available for valuetype Two, so omniORBpy constructs
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a suitable type based on the transmitted TypeCode. Because omniORBpy is unable
to know how (and indeed if) the application has implemented valuetype One, the
generated class for valuetype Two is not derived from the application’s One class.
When the second parameter is unmarshalled, it is given as an indirection to the
previously-marshalled value inside the Any. The parameter is therefore set to the
constructed Two type, rather than being truncated to an instance of the applica-
tion’s registered One type.

Because of these issues, it is best to avoid defining interfaces that mix value-
types and Anys in a single operation, and certainly to avoid trying to share plain
values with values inside Anys.
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